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1 Introduction

It is known that the information of the features of objects are processed in different
cortical areas. However, it is still an open question that how the different features of an object
bond together to form a coherent image (Monteiro, Bussab & Chaui Berlinck, 2002). Von der
Malsburg and other authors (von der Malsburg & Buhmann, 1992) have proposed that these
features are linked through temporal correlations of neuronal activities. In other words, the
feature is represented by a synchronized oscillation of a neuronal group. Meanwhile, theories
and observations have suggested that the oscillatory activity of cortex may be related to the
processing of sensations and cognitive functions (e.g., Engel et al., 1992b; Basar et al., 1999).
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Based on these facts and hypotheses, we raise our main question that under which con-
ditions the oscillatory behavior of the neural response may appear. The activity of a corti-
cal column is Mathematically described through the model developed by Wilson & Cowan
(1972). The model uses two variables to describe two populations of excitatory or inhibitory
cells respectively. In our final project we would use the simplified the model (Monteiro,
Bussab & Chaui Berlinck, 2002) and try to explore the dynamics of the modified system of
differential equations. Since the oscillatory behavior may correspond to a limit cycle on the
phase plane, we would focus on the occurrence of limit cycles. First, we look specifically
at a particular case when columns do not receive any stimulations and we want to learn
the behavior of this system. In this case, we would fix other parameters and only change
the variable representing the strength of the self-excitatory connection to see under which
condition the limit cycles would appear. We do some analysis on the stability of equilibria
and use Mathematical and Python simulation to help verify our analysis. Then, we would
make two attempts to see the more general cases when the amount of external stimulation
is not equal to zero. In this case, we combine the Mathematical analysis with visualizations
to figure out the reasons of occurrence and disappearance of the limit cycles.

2 Literature Review

The Wilson–Cowan model developed in 1972 emphasizes not the individual cell but rather
the properties of populations (Wilson & Cowan, 1972). Wilson and Cowan explain the
reasons for this emphasis in the way that: The sensory information is introduced in the form
of largescale spatiotemporal activity and pattern recognition is in some sense a global process.
Meanwhile, local interactions can be random, but that this local randomness may give rise
to quite precise long-range interactions (Wilson & Cowan, 1972). Thus, it is appropriate to
look at the dynamics of neural populations rather than individual cells. In our project, we
assume that the basic functional unit is a cortical column instead of a single neuron.

Another crucial assumption of the Wilson–Cowan model is that “all nervous processes
of any complexity are dependent upon the interaction of excitatory and inhibitory cells”
(Wilson & Cowan, 1972). The failure of considering inhibition led Ashby et al. (1962)
to conclude the paradox of dynamical stability of the brain and Griffith (1963) dissolved
the paradox by the introduction of inhibition. Thus, it is essential to take both excitatory
and inhibitory cells into consideration. And we use two variables separately to describe
each population. In the Wilson–Cowan model (Wilson & Cowan, 1972) the interaction of
excitatory and inhibitory populations is described through a sigmoidal function, which is
usually chosen as the hyperbolic tangent or the logistic curve. Both choices make difficult
theoretical analyses. A main problem concerning analytical approaches to Wilson–Cowan
model rests on the difficulty in finding the conditions for the existence of limit cycle. In 2002,
Monteiro, Bussab and Chaui Berlinck bypassed the difficulty by choosing another sigmoidal
function and modified the original model (Monteiro, Bussab & Chaui Berlinck, 2002). In

2



this project, we would use the same modified model derived by them.

3 Methods and Results

3.1 Model

In the study of Monteiro.et.al(2002) ,the model proposed by Wilson and Cowan(1972) in
their study converted into

d(x)t
dt

= −ax(t) + (1− rxx(t))S(wx(t)− by(t) + I(t))
d(y)t
dt

= −dy(t) + (1− ryy(t))S(cx(t)− ey(t) + J(t))
(1)

Here x(t) and y(t) are respectively E and I in the original model, which represents
respectively the ”proportion of excitatory or inhibitory cells firing per unit time at instant
t” (Wilson&Cowan, 1972, p. 3). a and d represent the natural decay factor, which is
taken as the constant 1 in the original model. w and e respectively represent the excitatory
or inhibitory stimulation the cell groups produced to themselves. b and c represent the
inhitaory or excitatory stimulation produced between cell groups. I and J are the external
stimulations. Relationships between these parameters can be illustated by Graph 1. S
corresponds to the response function, which gives the proportion of cells responding to
certain levels of stimulation. S is defined as

S(θ′) =

∫ θ′

0

D(θ)dθ (2)

where θ′ is certain simulation level, D(θ) is a distribution function of response thresholds
within certain cell populations, and θ represents the stimulation levels. Given the randomness
in D(θ), as Wilson and Cowan(1972) argues, ”No particular significance is to be attached to
the choice of S”. Therefore, any sigmoid function can fit in as long as it has the following
properties:

• S(θ′) is monotonically increasing.

• When θ′ → ∞, S(θ′) → C1; when θ′ → −∞, S(θ′) → C2, where C1 and C2 are real
constants.

• S(θ′) has and only has one inflection point.

Therefore, here we choose the sigmoidal function:

S(θ′) =
θ′√

θ′2 + 1
(3)
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Moreover, Wang(1995) proposed that e which is the inhibitary stimulation produced by the
inhibitary cells to themselves, does not change the behavior of the model. Therefore, in our
project we choose e = 0.

I

J

x

y

cb

w

e

Graph 1. The relationship between parameters

The model in equation (1) will then be:

d(x)t
dt

= f(x, y) = −ax+ wx−by+I√
(wx−by+I)2+1

d(y)t
dt

= g(x, y) = −dy + cx+J√
(cx+J)2+1

(4)

We will use equation (4) in following analyses.

3.2 Analysis

To study the state of limit cycle in this planar system, we first look into the state of
equilibria, which can be decided by the intersections of x-nullclines and y-nullclines, where
f(x, y) = 0 and g(x, y) = 0. As an example, graph 2 illustrates one state of the nullclines.
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Graph 2. Nullclines of the system at a = 0.1, b = 1, c = 1, d = 0.1, w = 1, I = 6, J = 4, generated by
Mathematica.

The nullclines can be described by curves:

f(x, y) = 0 → yf (x) =
1
b
(wx+ I − ax√

1−(ax)2
).

g(x, y) = 0 → yg(x) =
1
d
( cx+J√

1+(cx+J)2
)

(5)

For yf (x),it has a local maximum at x1 and a local minimum at x2 = −x1. When
x → − 1

a
, yf (x) → +∞, and when x → ∞, yf (x) → −∞.

For yg(x), yg(x) → 1
d
when x → +∞, and yg(x) → −1

d
when x → −∞, and yg(0) =

J
(d
√
1+J2)

.

The stability of the equilibrium can be decided by the Jacobian matrix of the system,
which is

DF (x) =

−a+ w√
1+(6+wx−y)2

− w(6+wx−y)2

(1+(6+wx−y)2)
3
2

− 1√
1+(6+wx−y)2

+ (6+wx−y)2

(1+(6+wx−y)2)
3
2

− c(4+cx)2

(1+(4+cx)2)
3
2
+ c√

1+(4+cx)2
−d

 (6)

where the trace T and determinant D are given by

T = αw − a− d
∆ = ad+ bcαβ − αdw

(7)

Here α = (1 − (ax∗)2)
3
2 and β = (1 + (cx∗ + J)2)−

3
2 , and x∗ is the x coordinate of the

equilibrium.
Hopf bifurcation is a strong indication of the existence of a limit cycle. Therefore, we need

to pay special attention to the conditions for Hopf bifurcation to happen. A key condition
for Hopf bifurcation to happen is T = 0 and ∆ > 0.When T changes from negative values to
positive values, an asymptotically stable limit cycle appears and x(t), y(t) present oscillatory
behavior.

3.3 A Particular Case

In this project we focus on the case where there is no external stimulation and see if
there can be any oscillatory behavior. Therefore, in this particular case we choose I = 0 and
J = 0.

In this case, w is the most important parameter, as it represents the strength of the
self-excitatory connection and is the only source of stimulation in this case. Therefore, in
this case we focus on the change of w and its influence on the existence of a limit cycle.

5



For the convenience of analysis, a, the natural decay factor for the excitatory cells is also
taken to be zero. The model then is:

dx
xt

= f(x, y) = wx−by√
(wx−by)2+1

dy
dt

= g(x, y) = −dy + cx
cx2+1

(8)

By solving

{
f(x, y) = 0
g(x, y) = 0

, the coordinates of the equilibria are:

x∗
a = 0, y∗a = 0,

x∗
b =

1

c

√
γ2 − 1, y∗b =

wx∗
b

b
x∗
c = −x∗

b , y
∗
c = −y∗b

Define γ ≡ bc
dw
.

For the equilibrium (0, 0), in this case the trace T = w − d, ∆ = g(x, y) = −dy + cx
cx2+1

.
T < 0 when w < d, T > 0 when w > d, T = 0 when w = 0; ∆ > 0 when γ > 1, ∆ = 0 when
γ = 1, ∆ < 0 when γ < 1. According to Graph 3, the stability states of this equilibrium can
be separated into three cases:

• w < d (T < 0), γ > 1(∆ > 0), stable (node/spiral)

• w > d (T > 0), γ > 1(∆ > 0), unstable (node/spiral)

• γ < 1(∆ < 0), saddle

For other two equilibria, when γ < 1, they do not exist; when γ > 1, ∆ < 0, they are
saddle points. Therefore, the stability states of these two equilibria can be separated into
two cases.

• γ < 1, no existence

• γ > 1, saddle
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Graph 3. The T,D plane and the regions of stability.

Taken together, there are three cases:

• γ < 1, the other two equilibria do not exist and (0, 0) is a saddle point.

• γ > 1, w < d, the other two equilibria are saddle points and (0, 0) is stable node/spiral.

• γ < 1, w > d, the other two equilibria are saddle points and (0, 0) is unstable node/spi-
ral.

This can be illustrated in the following example. When we take b = 1, c = 1, d = 0.5,
and change the value of w, we can see the change in equilibria. In this example, there are
accordingly three cases of stability:

• w < 0.5 (w < d, γ > 1), the other two equilibria are saddle points and (0, 0) is a stable
spiral/node.

• w > 2 (w > d, γ < 1), the other two equilibria do not exist and (0, 0) is a saddle point.

• 0.5 < w < 2 (w > d, γ > 1), the other tow equilibria are saddle points and (0, 0) is an
unstable spiral/node.

Simulate this example with Listing 1 and we get results in Graph 4, which agrees with
our theories above. In the graph, the solid blue lines are nullclines of the system and their
intersections represent the equilibria. The red solid line is the trajectory starting from a
point near the origin and tracing through t = 0 to t = 100, where t is the unit time.
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Graph 4. The simulation done with Listing 1. at w = 0.1, 2.7, and 1 respectively.

Since the state of stability is already discussed, we now focus on under which condition
the limit cycle will appear. First, we consider the Poincaré’ Index Theorem, which states:

Theorem (Poincaré Index Theorem). Any closed orbit in the phase plane must enclose
equilibria whose indices sum to +1. Either a node or a focus have index +1. A saddle point
has index −1.

Accordingly, in all cases we discussed above, the limit cycle exist only when γ > 1
(∆ > 1, in which case the fixed point (0, 0) is not a saddle), and it cannot enclose other
two equilibria. Moreover, in this case, for an asymptotically stable limit cycle to exist, the
fixed point enclosed in the limit cycle must be an unstable spiral or node. Therefore, an
asymptotically stable limit cycle exists only when w > d and γ > 1.

Second, we consider the Bendixson’s Theorem, which states:

Theorem (Bendixson’s Theorem ). For a planar system x′ = f(x) defined in a simply con-
nected domain D ∈ R2. Assume that f1, f2 have continuous partial derivatives in D, and
that divf = ∇f = ∂f

∂x
+ ∂g

∂y
does not change sign in D. Then the system x′ = f(x) does not

have any non-constant periodic orbits in D.

Conversely, for a limit cycle to exist, it must cross the line ∂f
∂x

+ ∂g
∂y

= 0. In this particular

case, ∂f
∂x

+ ∂g
∂y

= 0 gives two lines (symmetric about the origin and parallel with each other):

wx− by ± 1

b

√
w

d

3
2
]

− 1 = 0 (9)

Given the discussion above, a ring shaped region centered at the origin will have the
maximum radius rmax equals to the distance between the origin and a closest equilibrium,
and the minimum of its radius rmin equals to the distance between the origin and any one
of the two lines. In this case, they are given by:
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rmin =
w

√
(w
d
)
3
2−1

√
w2b2+1

rmax =
√

(γ2−1)
c2

(1 + w2

b2
)

(10)

Graph 5. The ring shaped region and the limit cycle at b = 1, c = 1, d = 0.5, w = 0.67.

Since the shape of the limit cycle in this model is not necessarily a circle centered at
(0, 0), the ring-shaped region is not strictly the region that the limit cycle must stay in, but
provides a rough region that the limit cycle may exist in. Meanwhile, rmin and rmax must
be real values, which gives the range that w > d and γ > 1, which coincides with the range
of w and γ in our previous analyses.

After obtaining this range with theoretical analysis, we then use numerical analysis to see
how the existence of an asymptotically stable limit cycle changes as w changes. Following the
previous example, we again take b = 1, c = 1, d = 0.5 and change w to check the existence of
an asymptotically stable limit cycle. We use Mathematica to draw the phase portraits for
different value of w (code in Listing 1), and obtained the results in Graph 6.

Graph 6. The solution trajectories at w = 0.35, 0.5, 0.55, 0.6, 0.69.
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We observe that the limit cycle appears w = 0.5, which agrees with our theoretical
analysis. At w = 0.5, T changes from negative to positive and the Hopf Bifurcation takes
place. As w grows, the size of limit cycle grows and finally reach rmax, where it disappears.

This process can be quantitatively illustrated by the relationship between the period of
the limit cycle and w. The period-w relationship obtained by Monteiro. et. al(2002) is
shown in Graph 7.

Graph 7.The period-w relationship at b=1,c=1,d=0.5, Monteiro.et. al (2002, p. 87).

In Graph 7, we can observe that the limit cycle appears at w = 0.5. As w increases,
the period keeps increasing and when w → 0.7, period→ ∞, which agrees with our previous
observation.

In the particular case, when a = 0, b = 1, c = 1, d = 0.5, w = 0.6, we also use python to
simulate the system and the activities of excitatory and inhibitory cells (code in Listing 2).
In Graph 8, we can see that the solution start from the point (2, 2) would approach the limit
cycle as t increases, which corresponds to our previous assumption. If we record each x, y
coordinates as a function of t, then it would give rise to the two curves shown in the Graph
9. The blue curve represents the excitatory cells while the orange curve represents inhibitory
cells. As t increases, the two curves become periodic which represents the oscillatory behavior
of the cells. We also want to see how does the periods of the limit cycles change as the variable
w changes. To calculate the period for each w0, we find the time intervals between each local
maximum and when the difference of the time interval is less than the threshold (set as 0.2),
we decide to make the time interval as the period at w0. In this simulation, we take 100
different values for w and make the period-w curve in the Graph 10. The result also fits our
assumption.
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Graph 8.The dynamics of the system at a = 0, b = 1, c = 1, d = 0.5, w = 0.6.

Graph 9.The behavior of x, y at a = 0, b = 1, c = 1, d = 0.5, w = 0.6.

Graph 10.The period of the system at a = 0, b = 1, c = 1, d = 0.5, w = 0.6.

3.4 Other Cases

We also study other cases that can influence the occurrence of a limit cycle. The general
case is too complex to be study and we find it necessary to pin down other parameters to
analysis the model. Here we specifically focus on the change of external simulations (I, J)
and its influence on the occurrence of a limit cycle.
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3.4.1 J = 0, Pin down other parameters and change I

The first case we study is J = 0 and the changes in the state of a limit cycle as I changes.
Through simulation in Mathematica we find the results in Graph 11 (with code in Listing
3).

Graph 11. The solution trajectories at I = −4,−2.98, 0, 2.98 and 4.

We observe that the nullcline yf (x) moves up vertically as I increases. The limit cycle
exists when I ∈ [−2.98, 2.98]. In this range yf (x) and yg(x) has only one intersection x∗

0

between x1 and x2, and x∗
0 is always unstable. One explanation for this is the limit cycle

moves as x∗
0 moves and it get closer to other equilibrium and its period gets larger. As the

nullclines get closer to the intersection point, the period of the limit cycle tends to infinity
and the limit cycle disappears when it reaches other equilibrium. The period-I relationship
found by Monteireo et. al.(2002) is shown in Graph 12, and the result agrees with this
explanation.

Graph 12. Period-I relationship found by Monteireo et. al (2002,p. 89)

3.4.2 I = 0, Pin down other parameters and change J

The second case we study is I = 0, and the changes in the state of a limit cycle as J
changes. Similarly, with simulation in Mathematica we get result in Graph 12 (with code in
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Listing 3).

Graph 13. The solution trajectories at I = −8,−7.22, 0, 7.22 and 8.

We observe that the nullcline yg(x) moves left horizontally as J increases. The limit cycle
exists when I ∈ [−7.22, 7.22]. In the whole process the nullcline yf (x) and yg(x) always has
and only has one intersection, while the stability of this equilibrium change from stable to
unstable and then to stable as J increases. The bifurcation happens when J = 7.22 and
J = −7.22, where T is close to 0 (T = ±0.002) and ∆ > 0. The limit cycle gets smaller
and same as the period of the limit cycle as the J get closer to the point where the system
goes through Hopf Bifurcation and disappears when the equilibrium changes from unstable
to stable. The period-J relationship found by Momteireo et. al is shown in Graph 13 and
the result agrees with this explanation.

Graph 14. Period-J relationship found by Monteireo et. al. (2002, p. 90).

3.4.3 Another finding

Another finding of this model is when w = 0, T = −a − d In this case T is constantly
negative and the equilibria of the system can only be saddle or stable, and a limit cycle
cannot exist. Therefore, we conclude that w > 0 is a key to the occurrence of a limit cycle.
In other words, the self-excitatory factor is necessary for the oscillatory behavior.
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4 Conclusion and Discussion

In our project, we try to answer the question that under which conditions the oscillatory
behavior of the neural response may appear. In the particular case (I=0, J=0), we make the
external stimulations as zero and explore the dynamics of the system as w changes. We found
that when we take a = 0, b = 1, c = d, d = 0.5, the limit cycle in the planar system would
appear when w belongs to a rough range (0.5, 0.7). And the period of the limit cycle increases
as w increases. The particular case showed that even an unstimulated cortical column can
oscillate. Thus, the oscillations behavior may be explained as an intrinsic characteristic of
dynamical competition between excitatory and inhibitory neurons.

We also found that the oscillatory behavior and such a behavior only occur when w > 0
(self-excitatory connections exist), then the presence of self-excitatory connection may be
important for the oscillation.

In other cases, since there are too many cases, we only do two attempts. When we change
the external stimulation to the system, we observe that when we set I = 0 and change J ,
the Hopf Bifurcation takes place and accordingly the limit cycle appears and disappears
(the limit exists when J ∈ [−7.22, 7.22]); when we set J = 0 and changes I, we observe the
position of limit cycle changes and it disappears when enclosing other equilibrium (the limit
cycle exists when I ∈ [−2.98, 2.98]).

As we change different values of the variables, The model here shows that the period of
a limit cycle could also be changed. Therefore, the activity of cortical columns can oscillate
in different natural frequencies. Our results also suggest a partial solution to the problem.

Further explorations can be done by researching the influences of changes in other pa-
rameters have on the occurrence of a limit cycle and discuss their practical significance.

5 Appendix

1 i=0

2 j=0

3 a=0

4 b=1

5 c=1

6 d=0.5

7 Manipulate[

8 Show[ StreamPlot [{-a x + (w x - b y + i)/

9 Sqrt[(w x - b y + i)^2 + 1], -d y + (c x + j)/

10 Sqrt[(c x + j)^2 + 1]}, {x, -4, 4}, {y, -3, 3},

11 StreamColorFunction -> (Opacity [#5,

12 Blend [{Red , Green , Blue}, Norm [{#1, #2}]]] &)],
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13 ContourPlot[-d y + (c x + j)/Sqrt[(c x + j)^2 + 1] == 0, {x, -4,

14 4}, {y, -3, 3}, ColorFunction -> Yellow],

15 ContourPlot[-a x + (w x - b y + i)/Sqrt[(w x - b y + i)^2 + 1] ==

16 0, {x, -4, 4}, {y, -3, 3}, ColorFunction -> Yellow],

17 ParametricPlot[Evaluate[First[{x[t], y[t]} /.

18 NDSolve [{x’[

19 t] == -a x + (w x[t] - b y[t] + i)/

20 Sqrt[(w x[t] - b y[t] + i)^2 + 1],

21 y’[t] == -d y[t] + (c x[t] + j)/Sqrt[(c x[t] + j)^2 + 1],

22 Thread [{x[0], y[0]} == point]}, {x, y}, {t, 0, 100}]]] , {t, 0,

23 100}, PlotStyle -> Red]], {{point , {0.5, 0}}, Locator}, {w, 0.1,

24 3}, SaveDefinitions -> True]

25

Listing 1: Wilson-Cowan Simulation-Mathematica

1 # for fast array manipulation

2 import numpy as np

3 import math

4 # for plotting

5 import matplotlib.pyplot as plt

6 # for numerical ODE integration

7 from scipy.integrate import odeint

8 # for nonlinear equations

9 from scipy.optimize import fsolve

10 # to display plots in-line

11 %matplotlib inline

12

13

14 def cal_period(w):

15 def S(x):

16 return x / (np.sqrt(np.power(x,2) +1))

17 def WilsonCowan(y, t):

18 E = y[0]

19 I = y[1]

20 a = 0

21 b = 1

22 c = 1

23 d = 0.5

24 var_1 = 0

25 var_2 = 0

26

27 x_gradient = (w * E - b * I + var_1) / np.sqrt(np.power(w * E - b

* I + var_1 , 2) + 1)

28 y_gradient = -d * I + (c * E + var_2) / np.sqrt(np.power(c * E +

var_2 , 2) + 1)

29 return [x_gradient , y_gradient]

30

31 # minimum and maximum x and y values we want displayed in the graph

32 minval = -3

33 maxval = 3

34 resolution = 50
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35 # State variables

36 x1 = np.linspace(minval , maxval , resolution)

37 x2 = np.linspace(minval , maxval , resolution)

38 # Create a grid for evaluation of the vector field

39 x1 , x2 = np.meshgrid(x1, x2)

40 # Evaluate the slopes

41 X1 , X2 = WilsonCowan ([x1, x2], 0)

42 # Compute the magnitude vector

43 M = np.hypot(X1, X2)

44

45 fixed_p = []

46 y1 = x1.ravel()

47 y2 = x2.ravel()

48 for i in range(resolution **2):

49 # find a zero

50 sol , infodict , ier , mesg = fsolve(WilsonCowan , [y1[i], y2[i]],

args =(0), full_output =1)

51 if ier == 1:

52 fixed_p.append(sol)

53

54 fixed_p = np.array(fixed_p).T

55 time = np.linspace(0, 100, 2000)

56 E0 , I0 = 2, 2

57 # find the solution with scint.odeint

58 odesol = odeint(WilsonCowan , [E0 , I0], time)

59 # separate the two solutions

60 exc_timeseries , inh_timeseries = odesol.T

61

62 for i in range(1, len(exc_timeseries) - 1):

63 if exc_timeseries[i] <= exc_timeseries[i - 1] and exc_timeseries[i

] <= exc_timeseries[i + 1]:

64 temp_start = i

65 for j in range(i + 1, len(exc_timeseries) - 1):

66 if exc_timeseries[j] <= exc_timeseries[j - 1] and

exc_timeseries[j] <= exc_timeseries[j + 1]:

67 temp_end = j

68 if abs(exc_timeseries[temp_end] - exc_timeseries[

temp_start ]) < 0.2:

69 start = temp_start

70 end = temp_end

71 break

72 else:

73 temp_start = temp_end

74 break

75 return end - start

76

77 w_test = np.linspace (0.5, 0.675, 100)

78 period_array = []

79 for i in w_test:

80 period_array.append (0.05 * cal_period(i))

81 print(cal_period(i))
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82

83 plt.plot(w_test , period_array)

84 plt.ylabel(r’$period$ ’)
85 plt.xlabel(r’$w$’)
86

87 # plotting the vector field

88 plt.figure(figsize =(10, 10))

89 plt.quiver(x2 , x1 , X2 , X1 , pivot=’mid’, alpha =.5)

90 plt.xlim([minval , maxval ])

91 plt.ylim([minval , maxval ])

92 plt.xlabel(r’$y$’, fontsize =16) # yes , you can use Latex code!

93 plt.ylabel(r’$x$’, fontsize =16)

94 plt.grid()

95

96 # plot the solution in the state space

97 plt.plot(inh_timeseries , exc_timeseries , ’.-’);

98

99 # plot the starting point

100 plt.scatter(I0 , E0 , marker=’*’, s=300, label="Starting point")

101 plt.legend(loc="upper left")

102

103 # plot the equilibria we identified

104 plt.scatter(fixed_p [1], fixed_p [0], marker=’o’, s=50, label="Stationary

points")

105

106 # plot the solution in time

107 plt.figure(figsize =(10.3 ,3))

108 plt.ylabel(r’$x , y$’)
109 plt.xlabel(r’$t$’)
110 plt.plot(time , exc_timeseries , ’.-’, label="excitatory");

111 plt.plot(time , inh_timeseries , ’.-’, label="inhibitory");

112 plt.legend ();

113

Listing 2: Wilson-Cowan Simulation-Python-Run in an IPython Notebook

1 a = 0.1

2 d = 0.1

3 b = 1

4 c = 1

5 w = 1

6 Manipulate[

7 Show[ StreamPlot [{-a x + ( w x - b y + i)/

8 Sqrt[(w x - b y + i)^2 + 1], -d y + (c x + j)/

9 Sqrt[(c x + j)^2 + 1]}, {x, -20, 20}, {y, -20, 20},

10 StreamColorFunction -> "Rainbow"],

11 ContourPlot[-d y + (c x + j)/Sqrt[(c x + j)^2 + 1] == 0, {x, -20,

12 20}, {y, -20, 20}, ColorFunction -> Yellow],

13 ContourPlot[-a x + (w x - b y + i)/Sqrt[(w x - b y + i)^2 + 1] ==

14 0, {x, -20, 20}, {y, -20, 20}, ColorFunction -> Yellow],

15 ParametricPlot[Evaluate[First[{x[t], y[t]} /.

16

17



17 NDSolve [{x’[

18 t] == -a x[t] + ( w x[t] - b y[t] + i)/

19 Sqrt[(w x[t] - b y[t] + i)^2 + 1],

20 y’[t] == -d y[t] + (c x[t] + j)/Sqrt[(c x[t] + j)^2 + 1],

21 Thread [{x[0], y[0]} == point]}, {x, y}, {t, 0, 1000}]]] , {t,

22 0, 1000} , PlotStyle -> Red]], {{point , {0.02 , 0}},

23 Locator}, {i, -5, 5}, {j, -10, 10}, SaveDefinitions -> True]

24

Listing 3: Wilson-Cowan Simulation-Mathematica

18
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